Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268143

Résumé

As SARS-CoV-2 becomes an endemic pathogen, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

2.
Sydney Christian Morgan; Stefan Aigner; Catelyn Anderson; Pedro Belda-Ferre; Peter De Hoff; Clarisse A Marotz; Shashank Sathe; Mark Zeller; Noorsher Ahmed; Xaver Audhya; Nathan A Baer; Tom Barber; Bethany Barrick; Lakshmi Batachari; Maryann Betty; Steven M Blue; Brent Brainard; Tyler Buckley; Jamie Case; Anelizze Castro-Martinez; Marisol Chacón; Willi Cheung; LaVonnye Chong; Nicole G Coufal; Evelyn S Crescini; Scott DeGrand; David P Dimmock; J Joelle Donofrio-Odmann; Emily R Eisner; Mehrbod Estaki; Lizbeth Franco Vargas; Michele Freddock; Robert M Gallant; Andrea Galmozzi; Nina J Gao; Sheldon Gilmer; Edyta M Grzelak; Abbas Hakim; Jonathan Hart; Charlotte Hobbs; Greg Humphrey; Nadja Ilkenhans; Marni Jacobs; Christopher A Kahn; Bhavika K Kapadia; Matthew Kim; Sunil Kurian; Alma L Lastrella; Elijah S Lawrence; Kari Lee; Qishan Liang; Hanna Liliom; Valentina Lo Sardo; Robert Logan; Michal Machnicki; Celestine G Magallanes; Clarence K Mah; Denise Malacki; Ryan J Marina; Christopher Marsh; Natasha K Martin; Nathaniel L Matteson; Daniel J Maunder; Kyle McBride; Bryan McDonald; Michelle McGraw; Audra R Meadows; Michelle Meyer; Amber L Morey; Jasmine R Mueller; Toan T Ngo; Julie Nguyen; Viet Nguyen; Laura J Nicholson; Alhakam Nouri; Victoria Nudell; Eugenio Nunez; Kyle O'Neill; R Tyler Ostrander; Priyadarshini Pantham; Samuel S Park; David Picone; Ashley Plascencia; Isaraphorn Pratumchai; Michael Quigley; Michelle Franc Ragsac; Andrew C Richardson; Refugio Robles-Sikisaka; Christopher A Ruiz; Justin Ryan; Lisa Sacco; Sharada Saraf; Phoebe Seaver; Leigh Sewall; Elizabeth W Smoot; Kathleen M Sweeney; Chandana Tekkatte; Rebecca Tsai; Holly Valentine; Shawn Walsh; August Williams; Min Yi Wu; Bing Xia; Brian Yee; Jason Z Zhang; Kristian G Andersen; Lauge Farnaes; Rob Knight; Gene W Yeo; Louise C Laurent.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.25.21257885

Résumé

Background: Successful containment strategies for SARS-CoV-2, the causative virus of the COVID-19 pandemic, have involved widespread population testing that identifies infections early and enables rapid contact tracing. In this study, we developed a rapid and inexpensive RT-qPCR testing pipeline for population-level SARS-CoV-2 detection, and used this pipeline to establish a clinical laboratory dedicated to COVID-19 testing at the University of California San Diego (UCSD) with a processing capacity of 6,000 samples per day and next-day result turnaround times. Methods and findings: Using this pipeline, we screened 6,786 healthcare workers and first responders, and 21,220 students, faculty, and staff from UCSD. Additionally, we screened 6,031 preschool-grade 12 students and staff from public and private schools across San Diego County that remained fully or partially open for in-person teaching during the pandemic. Between April 17, 2020 and February 5, 2021, participants provided 161,582 nasal swabs that were tested for the presence of SARS-CoV-2. Overall, 752 positive tests were obtained, yielding a test positivity rate of 0.47%. While the presence of symptoms was significantly correlated with higher viral load, most of the COVID-19 positive participants who participated in symptom surveys were asymptomatic at the time of testing. The positivity rate among preschool-grade 12 schools that remained open for in-person teaching was similar to the positivity rate at UCSD and lower than that of San Diego County, with the children in private schools being less likely to test positive than the adults at these schools. Conclusions: Most schools across the United States have been closed for in-person learning for much of the 2020-2021 school year, and their safe reopening is a national priority. However, as there are no vaccines against SARS-CoV-2 currently available to the majority of school-aged children, the traditional strategies of mandatory masking, physical distancing, and repeated viral testing of students and staff remain key components of risk mitigation in these settings. The data presented here suggest that the safety measures and repeated testing actions taken by participating healthcare and educational facilities were effective in preventing outbreaks, and that a similar combination of risk-mitigation strategies and repeated testing may be successfully adopted by other healthcare and educational systems.


Sujets)
COVID-19
3.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.17.238444

Résumé

The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro, bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=136 SRC="FIGDIR/small/238444v1_ufig1.gif" ALT="Figure 1"> View larger version (35K): org.highwire.dtl.DTLVardef@14ff1ecorg.highwire.dtl.DTLVardef@193d84corg.highwire.dtl.DTLVardef@15d6f9eorg.highwire.dtl.DTLVardef@14b16c6_HPS_FORMAT_FIGEXP M_FIG Graphical Abstract. Diagram of hypothesis for bacterial mediation of SARS-CoV-2 infection through heparan sulfate (HS).It is well known that host microbes groom the mucosa where they reside. Recent investigations have shown that HS, a major component of mucosal layers, is necessary for SARS-CoV-2 infection. In this study we examine the impact of microbial modification of HS on viral attachment. C_FIG


Sujets)
Adénocarcinome , Syndrome respiratoire aigu sévère , COVID-19 , Fuite de liquide cérébrospinal
SÉLECTION CITATIONS
Détails de la recherche